24 research outputs found

    An Integrated Decision Making Approach for Adaptive Shared Control of Mobility Assistance Robots

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht. Mobility assistance robots provide support to elderly or patients during walking. The design of a safe and intuitive assistance behavior is one of the major challenges in this context. We present an integrated approach for the context-specific, on-line adaptation of the assistance level of a rollator-type mobility assistance robot by gain-scheduling of low-level robot control parameters. A human-inspired decision-making model, the drift-diffusion Model, is introduced as the key principle to gain-schedule parameters and with this to adapt the provided robot assistance in order to achieve a human-like assistive behavior. The mobility assistance robot is designed to provide (a) cognitive assistance to help the user following a desired path towards a predefined destination as well as (b) sensorial assistance to avoid collisions with obstacles while allowing for an intentional approach of them. Further, the robot observes the user long-term performance and fatigue to adapt the overall level of (c) physical assistance provided. For each type of assistance a decision-making problem is formulated that affects different low-level control parameters. The effectiveness of the proposed approach is demonstrated in technical validation experiments. Moreover, the proposed approach is evaluated in a user study with 35 elderly persons. Obtained results indicate that the proposed gain-scheduling technique incorporating ideas of human decision-making models shows a general high potential for the application in adaptive shared control of mobility assistance robots

    Robot deployment in long-term care: a case study of a mobile robot in physical therapy

    Get PDF
    Background. Healthcare systems in industrialised countries are challenged to provide care for a growing number of older adults. Information technology holds the promise of facilitating this process by providing support for care staff, and improving wellbeing of older adults through a variety of support systems. Goal. Little is known about the challenges that arise from the deployment of technology in care settings; yet, the integration of technology into care is one of the core determinants of successful support. In this paper, we discuss challenges and opportunities associated with technology integration in care using the example of a mobile robot to support physical therapy among older adults with cognitive impairment in the European project STRANDS. Results and discussion. We report on technical challenges along with perspectives of physical therapists, and provide an overview of lessons learned which we hope will help inform the work of researchers and practitioners wishing to integrate robotic aids in the caregiving process

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    The benefits of strength training on musculoskeletal system health: practical applications for interdisciplinary care

    Get PDF
    Global health organizations have provided recommendations regarding exercise for the general population. Strength training has been included in several position statements due to its multi-systemic benefits. In this narrative review, we examine the available literature, first explaining how specific mechanical loading is converted into positive cellular responses. Secondly, benefits related to specific musculoskeletal tissues are discussed, with practical applications and training programmes clearly outlined for both common musculoskeletal disorders and primary prevention strategies

    Robot shift from industrial production to social reproduction

    No full text
    This chapter analyses people\u2019s attitudes towards the use of robots in the different domains of life and, specifically, in the domain of social reproduction. The analysis is based on Eurobarometer 382 \u201cPublic Attitudes towards Robots\u201d data (N = 26,751), which was carried out among EU citizens aged 15 and over in 27 member states in 2012. The results of the study show that on average European perceptions of robots are positive and permissive. The life domains in which robots have already been used for a long time (e.g. space exploration, manufacturing, military and security business, search and rescue work) turn out to be the most popular areas for the further penetration of robots. The least preferred life domains are those, which address the core functions of social reproduction (e.g. care of children, elderly people and the disabled, education, leisure). With a series of ordinal logistic regression analyses, we outline the socio-demographic factors that are associated with the willingness to have more robots in the various fields of social production. Pensioner\u2019s supportive attitude towards the use of robots in health care and educational activities is highlighte
    corecore